AN EMPIRICAL STUDY OF SOFTWARE ERROR DETECTION

USING SELF-CHECKS*

Sung D. Cha
Nancy . Leveson

Timothy J. Shimeall

Dept. of Inforimation & Computer Science
University of California, Irvine
Irvine, CA 92717

Abstract

This paper presents the results of an empirical study of error
detection using self-checks. A total of twenty-four graduate stu-
dents in computer science al the University of Virginia and the
University of California, Irvine, were hired as programmers. Work-
ing independently, each first prepared a set of self-checks using just
the specification for an application, and then each modified an
existing implementation of the specification. The modified pro-
grams were analyzed to classify the various checks that the pro-
grammers wrote, and then tested to measure the error-detection
performance of the checks.

The goal of this study was not just to obtain quantitative
results but to learn more about such checks and how they might
best be implemented. This information may result in better
methods for formulating checks, making them easier to write and
more effective. The analysis of the checks revealed that there are
great differences in the ability of individual programmers to design
eflective checks. We found that some checks that might have been
effective failed to detect a fault because they were badly placed,
and there were numerous instances of checks signaling non-existent
errors. In general, specification-based checks alone were not as
effective as combining them with code-based checks. Faults were
detected by the self-checks that had not been detected previously
by voting 28 versions of the program over a million randomly-
generated test cases.

Introduction

Cructal digital systems can fail because of faults in either
software or hardware. A great deal of research in hardware design
has yielded computer architectures of potentially very high reliabil-
ity, such as SIFT® and FTMP'. In addition, distributed systems
(incorporating fail-stop ptocessors®®) can provide graceful degrada-
tion and safe operation even when individual computers fail or are
physically damaged.

The state of the art in software development is not as
advanced. Current production methods do not yield software with
the required reliability for crucial systems, and advanced methods
of formal verification!® and synthesis'® are not able to deal with
software of the required size and complexity. Fault tolerance!® has
been proposed as a technique to allow software to cope with its
own faults in a manner reminiscent of the techniques employed in
hardware fault tolerance. Many detailed proposals have been made
in the literature, bat there is little empirical evidence to judge
which techniques are most effective or even whether they can be
applied successfully to real problems. This study is part of an on-
going effort by the authors to collect and examine empirical data

*This work was supported in part by NASA under grant smdiers NAG-1-311. and
NAG-1-G68, in part by NSF grants DCR-8406532 and DCR-8321395. and in part by
MICRO grants cofunded by the state of California. Hughes Aireraft Coo and TRW.

"NASA-CR-185069)

SOF TWAKE EKROR DETLCTION USING

(California Univ.) 6 p

AN EMPIFICAL 57TUDY Ur
SELF-CHECKD

AN
John C. Knaght
I A ~ri1
-~ 4 - -
Dept. of Computer Science)
University of Virginia [? .
Ly

Chatlottesville, VA 22903

on software fault tolerance methods in order to focus future
research efforts and to allow decisions to be made about real pro-
Jects.

Previous studies by the authors have looked at N-version pro-
gramming in terms of independence of failures'®, reliability
improvement, and error detection'®. Other empirical studies of V-
version programming have been reported®¢ 101121 4 study by
Anderson! showed promise for recovery blocks but concluded that
acceptance tests are difficult to write. Acceptance tests are a sub-
set of the more general run-time assertion or self-check used in
exception landling and testing schemes; such tests are performed
after completion of a program and are essentially external tests
that cannot access any local state. Such tests can, of course, also
be applied to subprograms within programs. More information
about the use of self-checks to detect software errors might result
in better methods for formulating checks, making them easier to
write and more effective. Our goal in this study was not merely to
provide numerical data but to learn more about such checks and
how they might best be implemented.

In order to eliminate as many independent variables from the
experiment as possible, it was decided to focus on error detection
apart from other issues such as recovery. This also means that the
results have implications beyond software fault tolerance alone, for
example in the use of embedded assertions to detect software errors
during testing 23 Furthermore, in some safety-ctitical systems
(c.g., the Boeing 737-300 and the Airbus A310) error detection is
the only objective. In these systems, software recovery is not
attempted and, instead, a non-digital backup system such as an
analog or human alternative is immediately given control in the
event of a computer system failure. The results of this study may
have i1mmediate application in these areas. The next section
describes the design of the study. Following this, the results are
described and conclusions drawn.

Experimental Design

This study uses the programs developed for a previous experi-
ment by!*. Twenty-seven versions of a program to read radar data
and determine whether an interceptor should be launched to shoot
down the object (hereafter referred to as the Launch Interceptor
Program, or LIP) were prepared from a common specification by
graduate students and seniors at the University of Virginia and the
University of California, Irvine. Extensive efforts were made to
ensure that individual students did not cooperate or exchange
information about their program designs during the development
phase. The twenty-seven LIP programs have been analyzed by
running one million randomly generated test cases on each program
and locating the individual faults that were detected during the
testing procedure.

NBY=-T1122

ynclas

ga/et 0213123

In the present study. 8 students from UC} and 16 students
from UVA were employed for a week’s time to instrument the pro-
grams with self-checking code in an attempt to detect errors in the
programs. Eight programs were selected from the 27 and each was
randomly assigned to three students (one from UCI and two from
UVA). The selection of programs to be used was accomplished by
first eliminating the programs that had no previously detected
faults and then randomly selecting 8 of the remaining 21 programs.
The students were all graduate students in computer science with
an average of 2.35 years of graduate study. Professional experience
ranged from 0 to 9 years with an average of 1.7 years. None of the
participants had prior knowledge of the LIP program nor were they
familiar with the results of the previous experiment. There was no
significant correlation found between a participant's graduate or
industrial experience and their success at writing self-checks.

Participants were provided with a brief explanation of the
study along with an introduction to writing self-checks. All also
read Chapter 5 on Error Detection {rom a textbook on fault toler-
ance’. The participants were first asked to study the LIP
specification and to write checks using only the specification, the
training materials, and any additional references the participants
desited. When they had submitted their initial checks, they were
randomly assigned a program to instrument. The participants
were asked to write checks with and without looking at the code in
order to determine if there was a difference in eflectiveness between
self-checks designed by a person working from the requirements
alone and those for which the person has access to and information
about the program code. On the one hand. the person working
only from the requirements might provide more independence by
not being influenced by the written code. However, it could also
be argued that looking at the code will suggest different and
pethaps better self-checks. Because we anticipated that the process
of examining the code might result in the participants detecting
faults through code-reading alone, participants were asked to report
any such detected faults but to still attempt to write a self-check
to detect the fault.

The instrumented versions were subjected 1o an acceptability
criterion (200 randomly generated test cases) as in the previous
experiment. The original versions were known to run correctly on
that data, and we wanted to attempt to remove obvious faults
introduced by the self-checks. If any false alarms were raised by
these 200 test cases (faults reported that did not actually exist) or
if new faults were detected that had been introduced into the pro-
gram by the instrumentation, the programs were returned to the
participants for correction. Aleng with the instrumented version,
participants submitted time sheets, background profile question-
naires, and descriptions of all program faults identified by code
reading.

After the instrumented programs had satisfied the acceptabil-
ity criterion, they were executed using the test cases on which they
had failed in the previous experiment along with 20,000 new
randomly-generated test cases to see if new faults might have been
detected. Finally, the self-checks were carefully examined and
catalogued as to type of check and eflectiveness.

Results

The first task of the experiment participants was to read
through the program requirements specification and to design self-
checks based solely on that specification. These self-checks were
found to fall into four groups based on the general strategy of
check used:

(1] Duplication Checks: self-checks that duplicate the functional-
ity of the code and compare resuits. Most, but not all, of the
self-checks in this group use algorithms different from the ori-
ginal source code.

[2] Structural Checks: self-checks that verify the proper use of
data structures or the proper semantics of code. Examples

include a check that verifies that the exit condition of a loop
is true immediately following the loop and a check that
verifies that data values have not been mproperly overwrit-
ten.

3" Reversal Checks: self-checks that reverse the operation prr-
formed by the code and then see if the results are consistent
with the input data.

4" Consistency Checks: self-checks that determine if the results
have certain properties. Examples of consistency checks
include range checking, arithmetic exception checking, and
type checking.

Table 1 shows the classification of the self-checks designed from the
specification.! The participants labeled 3¢ and 8b did not provide
specification-based self-checks. Note that the largest number of
checks written were consistency checks followed by duplication
checks. Performance is discussed later, but Tables 3 and 5 show
that a total of 33 self-checks were completely or partially effective
in detecting errots. Of these 33 eflective checks, 4 (or 12%) were
formulated by the participants after looking at the requirements
specification only. The remaining 88% of the effective checks were
designed after the participants had looked at the code. Although it
night be hypothesized that acceptance tests in the recovery block
structure should be based on the specification alone, our results
indicate that effectiveness of the self-checks can be improved when
the specification-based checks are refined and expanded by source
code reading and a thorough and systematic instrumentation of the
program. It appears that it is very useful for the instrumentor to
actually see the code when writing self-checks.

; 4 Type of checks used | Total
Dup.] Struct. I Rev. | Con. l Other*
3a 1 0 0 10 0 11
i3b 1 1 2 10 0 14
| 6a 2 0 0 0 0 2
6b 0 0 15 0 24
6c 0 0 0 14 0 14
Ba 20 0 5 0 0 25
8¢ 15 0 15 16 0 46
12a 16 0 0 0 0 16
12b 0 1 0 26 0 27
I 12¢ 1 3 i 0 0 4
| 14a 16 0 10 0 17
14b 21 16 16 | 36 0 89
14c¢ 2 0 0 4 0 6
20a 0 0 0 4 7 11
! 20b 15 0 4 34 2 55
{20¢ 8 2 0 5 0 15
123a 17 0 0 0 0 17
{23b 0 0 0 27 (0 27
{23 | 0 0 18 15 0 33
"25a 15 0 0 0 0 15
i 25b 0 0 0 8 2 10
S a85¢ 0 0 o | 5 o | s
PTotal | 149 23 76 | 218 il | 477

Table 1: Specification-Based Self-Checks

T«»r:lor to nid the reader in referring to previously published descripuions of the
faults found n ehe original LIP prograius. the programs are referred to in this paper
by the numbers previously assigned in the original experiment. A single letter suflix
is added {a. L. or ¢} 1o distinguish between the three independent inscramenentnns
of the prograus.

*These self-checks were too vague to be classified

Version Reading Developing| Coding Debugging Total

Ja & 3h T 13 ER
sb 7 11 T35 5 425
e 21 T3 9 40

6a 2 9 8 19.5

6b 6.5 6 13.5 45 305

6c 13 6 [8 .3 30

8a 14 14 12 12 52
sb (475 5.75 | 5.75 16.75 33
8¢ & 8 [6 15 37 ‘
12 © 11 85 | 1175 | 11.25 | 41.5

12b | 75 45]55 3 205

12¢ 5 3.5] 20 © 1325 | 4175

14b | 4.5 '4.25] 21.25 T 95 395

l4c | 555 4.750 4 . 7 | 215 "

200 04 13 T 9 16 T a2

20c ;6.5 1775 [5 14] 3325

2a 4 12 5 10 1 31

23b 0 9.5 5 [3.75] 8.25 26.5

23¢ |3 16 13 105 | 323

25 | T 7] 155 2.5 32

25¢ | 815 85 | 9 725 | 335

Figure 1: Summary of Participant Time-Sheets

The second task of the participants was to instrument a par- Version Number of Lines Increase !
ticular program with self-checks. No limitations were placed on # original a b 4 a b ¢ |
the participants as to how much time could be spent (although 3 75T 909 1152 805|152 395 48 |
they were paid only for a 40 hour week which effectively set an 6 643 859 887 700/216 244 57 ‘
upper bound*) or how much code could be added. Table 2 8 600 1046 1356 824 1446 756 224 j
describes the change in length in each program during instrumenta- 12 573 1121 696 806 /548 123 233 |
tion. Note that there is a great variation in the aniount of code 14 605 905 1342 712300 737 107
added, ranging from 48 lines to 835 lines. Participants added an 20 533 611 1368 596 78 835 63 ;
average of 37 self-checks, varying from 11 to 97. Despite this vari- 23 349 1065 417 544|716 68 195 .
ation, there was no correlation between the total number of checks 25 906 1644 1016 1022(738 110 116 ;

inserted by a participant and the number of those checks that were

eflective at finding faults. That is, more checks did not necessarily .

) . . .

mean better fault detection. Table 2: Lines of Code Added During Instrumentation
There was also no statistically significant relationship

between the number of hours claimed to have been spent (as re- signal an error when no error is present. Finally, the effectiveness

ported on the timesheets) by the participants and whether or not
they detected any program faults. Figure 1 shows the amount of
time each participant spent rteading the specification and code,
developing self-checks based on that teading, implementing the
self-checks and debugging the self-checks. Three participants (14a,
20a, and 25a) did not submit a time-sheet and are excluded from
this figure.

Table 3 classifics the program-based self-checks in terms of
strategy used and effectiveness. Checks are classified as effective if
they correctly report the presence of an error during execution.
Two partially effective checks by participant 23a that detect an er-
ror most (but not all) of the time are counted as effective.
Ineffective checks are those that do not signal an ertor when one
occurs during tun-time in the module being checked. False alarms

+ .
*Several reported spending more than 40 hours on the project.

is classified as unknown if the check does not signal an error and
the module being tested is correct.

It can be seen from the last (Total) row in Table 3 that
duplication and consistency checks were about equally eflective in
detecting faults although more consistency checks were used. For
these programs, structural and reversal checks were not effective,
but this may have been influenced by the types of faults that were
actually in the programs. We examined the ineffective self-checks
(checks on code that contained faults but did not detect the faults)
in detail. They appear to fail due to one or more of the following
reasons:

. Wrong self-check strategy — the participant used a type of
self-check inappropriate to detect the fault present in the
code. For example, use of a structural check when the fault
was an inadvertent substitution of one variable for another in
an expression.

Effectives | Ineflectives [False Alarmsi Unknowns Total

"4 'DSRCIDSRCIDS R CID R_C
e R i e e i . ‘
Ja ¢ | 1 2] 3
3b | 2 | A1 10 1336
| 3c 3 | i 11 L1400
| ba |2 113 2 6 19 1 T S
bb ! 12 16 1 19 340 82
fe 9 2 8 19
D ga 2 , | 13 15
togh ! b1 o4 to s 54 2. 68
Bc i1 i1 2 113 1 105 19 |
12a 2 2 t2 3 31| 40 |
12b 51 17
12¢ |1 8 1 1 16 8| 35
14a 5 1 1 56| 63
14b 3 1123 37 65 |
14¢ 1 115) 17 |
20a i1 4 303111
20b 2§ 2 111 112 30) 99
20c | 1 1 271 29
D3y g 2v 9 11
23b 5 24| 29
23c 2 301 32
2%a | T 2, 31) 40
256 |1 i : 4 8 11
25¢ 5 j 4 2 a
[Total |19 1410 28 50(5 2 373 168 31 462 865 |
Table 3: Self-Check Classification
. Wrong check placement — the participant placed the self-

check in a location where not all results were checked, and
the fault was on a different path.

. Use of the original faulty code in the self-check — the partici-
pant falsely assumed a portion of the code was correct and
called that code as part of the self-check.

It should be noted that the placement of the checks may be as cru-
cial as the content. This has important implications for future
research in this area and for the use of self-checking in real applica-
tions.

It should not be assumed that a false alarm involved a fault
in the self-checks. In fact, there were cases where an error message
was printed even though both the self-check and the original code
were correct. This occurred when the self-check made a calculation
using a different algorithm than the ornginal code. Because of the
inaccuracies introduced by finite precision arithmetic compounded
by the difference in otder of operations, the self-check algorithmn
sometimes produced a result that differed from the original by
more than the allowed tolerance. Increasing the tolerance does not
necessarily solve this problem in a desirable way. This same prob-
lem occurred in our previous experiment and is discussed in detail
elsewhere’.

Some faults were detected while the participants were reading
the code. The numbers in Table 4 refer to the numnbering used to
identify the individual faults described elsewhere®. Three faults
were reported that actually were not faults; the participant misun-
desstood the code.

Table 5 summarizes the detected faults by how they were
found. 20% of the detected faults were detected by specification-
based checks, 40% by code-reading, and 40% by code-based checks.
Note that often more than one check detected the same fault in the
code-based case, which was not true of the specification-based or
code-reading fauits.

*These two chiecks were effective mast. but not all, of the tune

Table 4: Faults Detected Through Code-Reading

! { Due To

; Object | Spec-hased Code i Code-based .\
‘; ' Design . Reading Design

I ’ (SP) . _{CR) {(CD)

! Faults Detected 4 . 8 8 20

{ Effective Checks 4 i 8 21 L33

Table 5: Fault Detection Classified by Instrumentation Technique

One final way of looking at the results of this study is to con-
sider the number of faults detected and introduced by the partici-
pants. Table 6 shows this information.

This data makes very clear the difficulty of writing effective self-
checks. Of 20 previously known faults in the programs, only 11
were detected {the 14 detected known faults in Table 6 include
some multiple detections of the same fault) and only 3 of the 11
detected faults were found by more than one of the three partici-
pants instrumenting the same program. It should be noted, how-
ever, that the versions used in the experiment are highly reliable
(an average of better than 99.9 success rate on the previous one”
million case testing), and many of the faults are quite subtle. We
could find no particular types of faults that were easier to detect
than others. Individual differences in ability appear to be impor-
tant here.

One rather unusuval case occurred. One of the new faults
detected by participant 8¢ was detected quite by accident. There
is a previously unknown faul in the program. However, the check-
ing code contains the same fault. An error message is printed
because the self-check code uses a different algorithm than the ori-
ginal, and finite precision problems cause the self-check to differ
from the original by more than the allowed real-number tolerance.
We discovered the new fault while evaluating the error messages
printed, but it was entirely by chance. Erroneous triggering of
self-checks due to finite precision problems occurred in modules
that did not contain a fault, and in that case the error message was
classified as a false alarm (as discussed above}. Our decision was
to classify the self-check as effective because it does signal a fault
when a fault does exist, but this is a subjective choice.

It is very interesting that the self-checks detected 6 faults not
previously detected by comparison of twenty-eight versions of the
program over a million test cases'. After closer examination of

“the newly discovered faults, we found that one of the reasons they
were not uncovered previously is that the random test case selec-
tion algorithm inadvertently did not allow generating those test
cases that would have revealed some of the faults. This points out
the well-known difficulty in selecting appropriate test cases. The
fact that the self-checks uncovered new faults even though the pro-
grams were run on the same test cases that did not reveal the
faults previously implies that self-checks may have advantages over
voting alone. To understand why, it is instructive to examine an
example of one of the previously undetected faults.

Some algorithins are unstable under a few conditions. More
specifically, several mathematically valid formulae to compute the
area of a triangle are not equally reliable when implemented using
finite precision arithimetic.
mula:

In particular, the use of Heron's for-

Alnad\ I\nrmn Frmlls (J!hf‘l’ F‘xulls

aLlil o
Present, Detected Detected Added Faults
1 sp CRCDSP CR CD

12a 1
12b
12¢ ;
14a i
14b ,) | ‘
14¢ P P
20a ; ‘
20b ‘
20c il
23a
23b
23¢ |
25a i
25b 3 i
25¢
total | 20 308 13 1110

[
[+)

%)
L3

[

[

[}

to

Table 6: Summary of Fault Detection

area =vs*' (s —a)*(s-b}* (s —c)

where a, b, and ¢ are the distances between the three points and

s is (a+b +c)/2, fails n the rare case when ail the following con-

ditions are met simultaneously:

. Three points are almost co-linear (but not exactly) s will
then be extremely close to one of the distances, say a, so
that (s —a) will introduce round-off errors {around 107'¢ in
the hardware employed in this experiment).

. The product of the rest of the terms, s*(s —b)*(s ~c), is
large enough (approximately 10*) to make loundmg errors
significant through multiplication (approximately 107}).

. The area formed by taking the square root is slightly larger
than the real number comparison tolerance (10'G in our
example) so that the area is not considered zero.

Other formulas, for example

Tyt Zay3 Iy Y2 YTy Y37
5

area =

where z, and y, are the coordinates of the three points, did not fail
because the potential roundoff errors cannot become “significant”
due to the order of operations. 2 of the 6 previously unknown
faults detected involved the use of Heron’s formula. Because the
source of the unreliability is in the order of computation and
inherent in the formula, relaxing the real number comparison toler-
ance will not prevent this problem. The fault in Heron’s formula
was not detected during the previous testing because the voting
procedure compared the final result only, whereas the self-check
verified the validity of the intermediate results as well. For the few
cases in which it arose, the faults did not aflect the correctness of
the final output. However, under different circumstances the final
output would have been incorrect.

Although new faults were introduced through the self-checks.
this is not very surprising. It is known that changiug someone
else’s program is difficult and whenever new code s added to 4 pro-
gram there is a possibility of introducing faults. All software fault
tolerance methods involve adding additional code of one kind or
anotlier to the basic application programi. The major causes of the
new faults were an algorithmic error in a redundant computation,
use of an uninitialized variable during instrumentation, logic error,
use of Heron’s formula, infinite loops added in instrumentation, out
of bounds array reference, etc. The use of uninitialized vanables
occurred due to incomplete program instrumentation. A participant
would declare a temporary vanable to hold an intermediate value
during the computation, but fail to assign a value on some path
through the computation. A more tigorous acceptability criterion
may have detected these faults earlier, especially those that cause
an abnormal termination of the program.

Conclusions

This study was not designed to provide definitive answers to
any particular questions, but instead to attempt to determine what
the important questions are. This should guide us and others in
the design of further experiments, in the evaluation of current pro-
posals, and in the design of new methodologies. Some important
research issues arise as a result of this study that need further
study such as:

{1] There appear to be great differences in individual ability to
design effective self-checks. This suggests that more training
or experience might be helpful. Our participants had little of
either although all were fawmiliar with the use of pre- and
post-conditions and assertions to formally venfy programs.
The data suggests that it might also be interesting to investi-
gate the use of teams to instrument code.

[2] The programs were instrumented with self-checks in our
study by participants who did not write the original code. It
would be interesting to compare this with instrumentation by
the original programmer. A reasonable argument could be
made both ways. The original programmer, who presumably
understands the code better, might introduce fewer new faults
and might be better able to place the checks. On the other
hand, separate instrumentors might be more likely to detect
faults since they provide a new view of the problem. More
comparative data is needed here.

3] Placement of self-checks appeared to cause problems. Some
checks that might have been effective failed to detect a fault
because they were badly placed. This implies either a need
for better decision-making and rules for placing checks or
pethaps different software design techniques to make place-
ment easier.

f4] Specification-based checks alone were not as effective as using
them together with code-based checks. This nmplies that
fault tolerance may be enhanced if the alternate blocks in a
recovery block scheme, for example, are also augmented with
self-checks along with the usual acceptance test. This may
also apply to pure voting schemes. A combination of fault-
tolerance techniques may be more effective than any one
alone. More information is needed on liow best to integrate
these different proposals.

[5] The process of writing self-checks is obviously difficult. How-
ever, there may be ways to provide help with this process.
For example, Leveson and Shimeall (1983) suggest that safety
analysis using software fault trees (Leveson and Harvey) can
be used to determine the content and the placement of the
most important self-checks. Other types of application or
program analysis may also be of assistance. Finally, empiri-
cal data about common fault types may be important in
learning how to instrument code with self-checks.

Many promising research topics, empirical studies, and experiments
are suggested by the results of this study that may lead to better
procedures for software error detection.

Acknowledgements

The authors are pleased to acknowledge the efforts of the

experiment participants: David W. Aha, Tom Bair, Jack Beus-
mans, Bryan Catron. Harry S. Delugach, Siamak Emadi, Lon
Fitch, W. Andrew Frye, Joe Gresh, Randy Jones, James R. Kipps,
Faith Leifman, Costa Livadas, Jerry Marco, David A. Montuon,
John Palesis, Nancy Pomicter, Mary Theresa Roberson, Karen
Ruhleder, Brenda Gates Spielnan, Yellamraju Venkata Srinivas,
Tim Strayer, Gerald Reed Taylor III, and Raymond R. Wagner, Jr.

1]

{10]

References

T. Anderson, P.A. Barrett, D.N. Halliwell, and M.R. Mould-
ing, ““‘An Evaluation of Software Fault Tolerance in a Practi-
cal System", Digest of Papers FTCS-15: Fifteenth Annual

Symposium on Fault- Tolerant Computing, pp. 140-145, June

1985.

T. Anderson and P.A. Lee, Fault Tolerance: Principles and
Practice Englewood Cliffs, NJ, Prentice-Hall Intl., 1981.

D.M. Andrews and J.T. Benson, “An Automated Program
Testing Methodology and its Implementation,” Proc. 5th
Int. Conference on Software Engineering, San Diego, CA,
March 1981,

A. Avizienis and L. Chen, *‘On the Implementation of N-
version Programming for Software Fault-Tolerance During
Execution”, Proceedings of COMPSAC 77 pp. 149-155,
November 1977.

A. Avizienis and J.P.J. Kelly, “Fault Tolerance By Design
Diversity: Concepts and Experiments”, IEEE Computer
Magazine , Vol. 17, No. 8, pp. 67-80, August 1984.

P. Bishop, D. Esp, M. Barnes, P. Humphreys, G. Dahll, J.
Lahti, and S. Yoshimura, “Project on Diverse Software - An
Experiment in Software Reliability”, Proceedings of IFAC
Workshop SAFECOMP'85, October 1985.

S.S. Brilliant, J.C. Knight, and N.G. Leveson, ‘“The Con-
sistent Comparison Problem in N-Version Software”,
Software Engineering Notes, Vol. 12, No. 1, pp. 29-34, Janu-
ary 1987.

S.S. Brilliant, J.C. Knight, and N.G. Leveson, ‘‘Analysis of
Faults in an N-Version Software Experiment”, submitted for
publication, 1986b.

L. Chen and A. Avizienis, ‘‘N-version programming: A
fault-tolerance approach to reliability of software operation,”
Digest of Papers FTCS-8: Eighth Annual Symposium on Fault
Tolerant Compuling, Toulouse, France, pp. 3-9, June 1978.

J.R. Dunham, “Software Errors in Experimental Systems
Having Ultra-Reliability Requirements’, Digest of Papers
FTCS-16: Sizteenth Annual Symposium on Fault-Tolerant
Computing, pp 158-164, July 1986

L. Gmeiner and U. Voges, “Software Diversity in Reactor
Protection System: An Experiment”, Proceedings of IFAC
Workshop SAFECOMP '79 pp 75-79, 1979

D. Gries, The Science Of Programming, Springer Verlag,
1981.

A.L. Hopkins, et al., “FTMP - A Highly Reliable Fault-
Tolerant Multiprocessor For Aircraft”, Proceedings of the
IEEE, Vol. 66, pp. 1221-1239, October 1978.

J.C. Knight and N.G. Leveson, “An Experimental Evaluation
of the Assumption of Independence in Multi-Version

5]

(21]

(23]

Programmung”, [FEE Transaction on Software Engineering,
pp. 96-109, January 198ba.

J.C. Knight and N.G. Leveson. "An Empincal Study of
Failure Probabilities in Multi-Version Software’”. Digest of
Papers FTCS-16: Sirteenth dnnual Symposium on Fault-
Tolerant Computing, pp.165-170, July 1986b.

N.G. Leveson, and P.R. Harvey. “Analvzing Software
Safety”, [EEE Transactions on Software Engineering, Vol
SE-9, No. 5, pp 569-579, 1983.

N.G. Leveson, and T.J. Shimeall, ‘‘Safety Assertions for
Process-Control Systems™, Digest of Papers FTCS-13: Thair-
teenth Annual Symposium on Fault- Tolerant Computing, pp
236-240, June 1983.

H. Partsch and R. Steinbruggen, ‘‘Program Transformation
Systems'', ACM Computing Surveys. Vol. 15, No. 3, Sep-
tember 1983.

B. Randell, *“System Structure for Software Fault-
Toletance,” [EEE Transactions on Software Engineering,
Vol. SE-1, pp. 220-232, June 1975.

R.D. Schlichting and F.B. Schneider, ‘Fail-Stop Processors:
An Approach To Designing Fault-Tolerant Computing Sys-
tems”’, ACM Transactions On Computer Systems, Vol. 1. pp.
222-238, August 1983,

K.R. Scott, J.W. Gault, D.F. McAllister, and J. Wiggs,
“Experimental Validation of six Fauit Tolerant Software
Reliability Models”, Digest of Papers FTCS-1{: Fourteenth
Annual Symposium on Fault- Tolerant Computing, pp 102-107,
1984.

L.G. Stucki, “New Directions in Automated Tools for
Improving Software Quality"”, Current Trends in Program-
ming Methodology - Volume II: Program Validation, Prentice
Hall, 1977

J.H. Wensley, et al., “SIFT, The Design and Analysis of a
Fault-Tolerant Computer for Aircraft Control”, Proceedings
of the IEEE, Vol. 66, pp. 1240-1254, October 1978.

